Extensions 1→N→G→Q→1 with N=C3.A4 and Q=C32

Direct product G=N×Q with N=C3.A4 and Q=C32
dρLabelID
C32×C3.A4162C3^2xC3.A4324,133

Semidirect products G=N:Q with N=C3.A4 and Q=C32
extensionφ:Q→Out NdρLabelID
C3.A41C32 = C3×C9⋊A4φ: C32/C3C3 ⊆ Out C3.A4108C3.A4:1C3^2324,127
C3.A42C32 = A4×3- 1+2φ: C32/C3C3 ⊆ Out C3.A4369C3.A4:2C3^2324,131
C3.A43C32 = C3×C32.A4φ: C32/C3C3 ⊆ Out C3.A454C3.A4:3C3^2324,134
C3.A44C32 = A4×C3×C9φ: trivial image108C3.A4:4C3^2324,126

Non-split extensions G=N.Q with N=C3.A4 and Q=C32
extensionφ:Q→Out NdρLabelID
C3.A4.1C32 = C62.25C32φ: C32/C3C3 ⊆ Out C3.A4543C3.A4.1C3^2324,128
C3.A4.2C32 = He3.2A4φ: C32/C3C3 ⊆ Out C3.A4549C3.A4.2C3^2324,129
C3.A4.3C32 = C62.9C32φ: C32/C3C3 ⊆ Out C3.A4549C3.A4.3C3^2324,132

׿
×
𝔽